Publications

KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.

EEMEFN: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network

This work focuses on the extremely low-light image enhancement, which aims to improve image brightness and reveal hidden information in darken areas. Recently, image enhancement approaches have yielded impressive progress. However, existing methods still suffer from three main problems: (1) low-light images usually are high-contrast. Existing methods may fail to recover images details in extremely dark or bright areas; (2) current methods cannot precisely correct the color of low-light images; (3) when the object edges are unclear, the pixel-wise loss may treat pixels of different objects equally and produce blurry images. In this paper, we propose a two-stage method called Edge-Enhanced Multi-Exposure Fusion Network (EEMEFN) to enhance extremely low-light images. In the first stage, we employ a multi-exposure fusion module to address the high contrast and color bias issues. We synthesize a set of images with different exposure time from a single image and construct an accurate normal-light image by combining well-exposed areas under different illumination conditions. Thus, it can produce realistic initial images with correct color from extremely noisy and low-light images. Secondly, we introduce an edge enhancement module to refine the initial images with the help of the edge information. Therefore, our method can reconstruct high-quality images with sharp edges when minimizing the pixel-wise loss. Experiments on the See-in-the-Dark dataset indicate that our EEMEFN approach achieves state-of-the-art performance.

DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image Synthesis

In this paper, we focus on generating realistic images from text descriptions. Current methods first generate an initial image with rough shape and color, and then refine the initial image to a high-resolution one. Most existing text-to-image synthesis methods have two main problems. (1) These methods depend heavily on the quality of the initial images. If the initial image is not well initialized, the following processes can hardly refine the image to a satisfactory quality. (2) Each word contributes a different level of importance when depicting different image contents, however, unchanged text representation is used in existing image refinement processes. In this paper, we propose the Dynamic Memory Generative Adversarial Network (DM-GAN) to generate high-quality images. The proposed method introduces a dynamic memory module to refine fuzzy image contents, when the initial images are not well generated. A memory writing gate is designed to select the important text information based on the initial image content, which enables our method to accurately generate images from the text description. We also utilize a response gate to adaptively fuse the information read from the memories and the image features. We evaluate the DM-GAN model on the Caltech-UCSD Birds 200 dataset and the Microsoft Common Objects in Context dataset. Experimental results demonstrate that our DM-GAN model performs favorably against the state-of-the-art approaches.